VIT Paper Reading

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

将transformer引入到了Image,代替了Conv,只是用transformer.
之前的难点:

  • 相较于words token, 图像的每一个pixel没办法直接使用transformer,代价太大,每一个pixel都计算一次全局的self-attention的计算量很大。
  • Transformer 没有平移不变性以及局部特性,在训练的时候如果没有大数据集,performance不如CNN。

Method

image|690x366

每一个patch当作是一个token,每一个token过linear projection,第一个token添加一个class token,Then 和位置编码相加,输入到transformer中。

image|690x120

Transformer:

Transformer
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x

class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)

每一个token,预测qkv,通过qk计算attention,得到attentive的v。随后过一个FeedForward层。

Attention
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)

self.heads = heads
self.scale = dim_head ** -0.5

self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)

self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()

def forward(self, x):
b, n, _, h = *x.shape, self.heads
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)

dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale

attn = self.attend(dots)

out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)