Deepfake Detection之DeeperForensics-1.0

数据集组成

数据集含有1000个manipulate videos以及1000个源视频(FF++的youtube视频)

1000个manipulate 被5个等级的random-type distortions 处理,得到5个1000视频
1000个manipulate 使用more than one distortion处理,得到3个1000视频

文件分布:

  1. manipulate_video_list.txt中包含了11,000个manipulate视频
  2. endto_end_mix_distortions 是\数量的distortion方式得到的1000个视频。
  3. random_level是不同等级的,但是只有一种distortion.

standart set:

1,000 raw manipulated video and 1,000YouTube videos from FF++ form the standard set.

The videos are split into 7:1:2 as training, validation and test set.

原文中的训练:

we use 1, 000 raw manipulated videos without distortions in the standard set of DeeperForensics-1.0. For FaceForensics++, the same split is applied to its four subsets.

实验一:

即使用下面5类进行训练得到模型。文中是在hidden set里面进行comp的,亦可以在test set中进行。

探讨了不同换脸方法对于模型performance的影响。

  1. 1,000 deeperF1.0 raw manipulate videos + 1,000 ori
  2. 1,000 Deepfake + 1,000 ori
  3. 1,000 Face2Fave + 1,000 ori
  4. 1,000 FaceSwap + 1,000
  5. 1,000 Nt + 1,000

实验二

探讨dataset perturbations 对于模型performance的影响
We use 1, 000 manipulated videos in the standard set (std), 1,000 manipulated videos with single-level(level-5), random-type distortions (std/sing), 1,000 manipulatedvideos with random-level, random-type distortions (std/rand).

训练 测试
std std
std std/sing
std std/rand
std/sing std/sing
std/rand std/rand
std/sing std/rand
std/rand std/sing

实验三

探讨训练集对于模型performance的影响
We use 1, 000 manipulated videos in the standard set (std), 1,000 manipulated videos with single-level(level-5), random-type distortions (std/sing), 1,000 manipulatedvideos with random-level, random-type distortions (std/rand).

we combine std with std/sing, std/rand, and std/mix, 其中std/mix是end_to_end_mix_3_distortions

训练 测试
std hidden
std + std/sing hidden
std + std/rand shidden
std+std/mix hidden